29 GC 疑难情况问题排查与分析(上篇)¶
本章介绍导致 GC 性能问题的典型情况。相关示例都来源于生产环境,为演示需要做了一定程度的精简。
名词说明 :Allocation Rate,翻译为“分配速率”,而不是分配率。因为不是百分比,而是单位时间内分配的量。同理,Promotion Rate 翻译为“提升速率”。
高分配速率(High Allocation Rate)¶
分配速率(Allocation Rate)表示单位时间内分配的内存量。通常使用 MB/sec 作为单位,也可以使用 PB/year 等。分配速率过高就会严重影响程序的性能,在 JVM 中可能会导致巨大的 GC 开销。
如何测量分配速率?¶
通过指定 JVM 参数:-XX:+PrintGCDetails -XX:+PrintGCTimeStamps
,通过 GC 日志来计算分配速率。GC 日志如下所示:
0.291: [GC (Allocation Failure)
[PSYoungGen: 33280K->5088K(38400K)]
33280K->24360K(125952K), 0.0365286 secs]
[Times: user=0.11 sys=0.02, real=0.04 secs]
0.446: [GC (Allocation Failure)
[PSYoungGen: 38368K->5120K(71680K)]
57640K->46240K(159232K), 0.0456796 secs]
[Times: user=0.15 sys=0.02, real=0.04 secs]
0.829: [GC (Allocation Failure)
[PSYoungGen: 71680K->5120K(71680K)]
112800K->81912K(159232K), 0.0861795 secs]
[Times: user=0.23 sys=0.03, real=0.09 secs]
具体就是计算上一次垃圾收集之后,与下一次 GC 开始之前的年轻代使用量,两者的差值除以时间,就是分配速率。通过上面的日志,可以计算出以下信息:
- JVM 启动之后 291ms,共创建了 33280KB 的对象。第一次 Minor GC(小型 GC)完成后,年轻代中还有 5088KB 的对象存活。
- 在启动之后 446ms,年轻代的使用量增加到 38368KB,触发第二次 GC,完成后年轻代的使用量减少到 5120KB。
- 在启动之后 829ms,年轻代的使用量为 71680KB,GC 后变为 5120KB。
可以通过年轻代的使用量来计算分配速率,如下表所示:
Event
Time
Young before
Young after
Allocated during
Allocation rate
1st GC
291ms
33,280KB
5,088KB
33,280KB
114MB/sec
2nd GC
446ms
38,368KB
5,120KB
33,280KB
215MB/sec
3rd GC
829ms
71,680KB
5,120KB
66,560KB
174MB/sec
Total
829ms
N/A
N/A
133,120KB
161MB/sec
通过这些信息可以知道,在此期间,该程序的内存分配速率为 16MB/sec。
分配速率的意义 分配速率的变化,会增加或降低 GC 暂停的频率,从而影响吞吐量。但只有年轻代的 Minor GC 受分配速率的影响,老年代 GC 的频率和持续时间一般不受 分配速率 (Allocation Rate)的直接影响(想想为什么?),而是受到 提升速率 (Promotion Rate)的影响,请参见下文¶
现在我们只关心 Minor GC 暂停,查看年轻代的 3 个内存池。因为对象在 Eden 区分配,所以我们一起来看 Eden 区的大小和分配速率的关系。看看增加 Eden 区的容量,能不能减少 Minor GC 暂停次数,从而使程序能够维持更高的分配速率。
经过我们的实验,通过参数 -XX:NewSize
、-XX:MaxNewSize
以及 -XX:SurvivorRatio
设置不同的 Eden 空间,运行同一程序时,可以发现:
- Eden 空间为 100MB 时,分配速率低于 100MB/秒。
- 将 Eden 区增大为 1GB,分配速率也随之增长,大约等于 200MB/秒。
为什么会这样?
因为减少 GC 暂停,就等价于减少了任务线程的停顿,就可以做更多工作,也就创建了更多对象,所以对同一应用来说,分配速率越高越好。
在得出“Eden 区越大越好”这个结论前,我们注意到:分配速率可能会、也可能不会影响程序的实际吞吐量。
总而言之,吞吐量和分配速率有一定关系,因为分配速率会影响 Minor GC 暂停,但对于总体吞吐量的影响,还要考虑 Major GC 暂停等。
示例 参考 Demo 程序。假设系统连接了一个外部的数字传感器。应用通过专有线程,不断地获取传感器的值(此处使用随机数模拟),其他线程会调用 processSensorValue() 方法,传入传感器的值来执行某些操作¶
public class BoxingFailure {
private static volatile Double sensorValue;
private static void readSensor() {
while(true) sensorValue = Math.random();
}
private static void processSensorValue(Double value) {
if(value != null) {
//...
}
}
}
如同类名所示,这个 Demo 是模拟 boxing 的。为了 null 值判断,使用的是包装类型 Double。程序基于传感器的最新值进行计算,但从传感器取值是一个耗时的操作,所以采用了异步方式:一个线程不断获取新值,计算线程则直接使用暂存的最新值,从而避免同步等待。
Demo 程序在运行的过程中,由于分配速率太大而受到 GC 的影响。下面将确认问题,并给出解决办法。
高分配速率对 JVM 的影响 首先,我们应该检查程序的吞吐量是否降低。如果创建了过多的临时对象,Minor GC 的次数就会增加。如果并发较大,则 GC 可能会严重影响吞吐量¶
遇到这种情况时,GC 日志将会像下面这样,当然这是上面的示例程序 产生的 GC 日志。
JVM 启动参数为:-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xmx32m
。
2.808: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003076 secs]
2.819: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003079 secs]
2.830: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0002968 secs]
2.842: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003374 secs]
2.853: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0004672 secs]
2.864: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003371 secs]
2.875: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003214 secs]
2.886: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003374 secs]
2.896: [GC (Allocation Failure)
[PSYoungGen: 9760K->32K(10240K)], 0.0003588 secs]
很显然 Minor GC 的频率太高了。这说明创建了大量的对象。另外,年轻代在 GC 之后的使用量又很低,也没有 Full GC 发生。种种迹象表明,GC 对吞吐量造成了严重的影响。
解决方案 在某些情况下,只要增加年轻代的大小,即可降低分配速率过高所造成的影响。增加年轻代空间并不会降低分配速率,但是会减少 GC 的频率。如果每次 GC 后只有少量对象存活,Minor GC 的暂停时间就不会明显增加¶
运行 示例程序 时,增加堆内存大小(同时也就增大了年轻代的大小),使用的 JVM 参数为:-Xmx64m
。
2.808: [GC (Allocation Failure)
[PSYoungGen: 20512K->32K(20992K)], 0.0003748 secs]
2.831: [GC (Allocation Failure)
[PSYoungGen: 20512K->32K(20992K)], 0.0004538 secs]
2.855: [GC (Allocation Failure)
[PSYoungGen: 20512K->32K(20992K)], 0.0003355 secs]
2.879: [GC (Allocation Failure)
[PSYoungGen: 20512K->32K(20992K)], 0.0005592 secs]
但有时候增加堆内存的大小,并不能解决问题。
通过前面学到的知识,我们可以通过分配分析器找出大部分垃圾产生的位置。实际上,在此示例中 99% 的对象属于 Double 包装类,在readSensor 方法中创建。
最简单的优化,将创建的 Double 对象替换为原生类型 double,而针对 null 值的检测,可以使用 Double.NaN 来进行。
由于原生类型不算是对象,也就不会产生垃圾,导致 GC 事件。
优化之后,不在堆中分配新对象,而是直接覆盖一个属性域即可。对示例程序进行简单的改造(查看 diff)后,GC 暂停基本上完全消除。
有时候 JVM 也很智能,会使用逃逸分析技术(Escape Analysis Technique)来避免过度分配。
简单来说,JIT 编译器可以通过分析得知,方法创建的某些对象永远都不会“逃出”此方法的作用域。这时候就不需要在堆上分配这些对象,也就不会产生垃圾,所以 JIT 编译器的一种优化手段就是:消除堆上内存分配(请参考基准测试)。
过早提升(Premature Promotion) 提升速率 (Promotion Rate)用于衡量单位时间内从年轻代提升到老年代的数据量。一般使用 MB/sec 作为单位,和“分配速率”类似¶
JVM 会将长时间存活的对象从年轻代提升到老年代。根据分代假设,可能存在一种情况,老年代中不仅有存活时间长的对象,也可能有存活时间短的对象。这就是过早提升:对象存活时间还不够长的时候就被提升到了老年代。
Major GC 不是为频繁回收而设计的,但 Major GC 现在也要清理这些生命短暂的对象,就会导致 GC 暂停时间过长。这会严重影响系统的吞吐量。
如何测量提升速率 可以指定 JVM 参数 -XX:+PrintGCDetails -XX:+PrintGCTimeStamps
,通过 GC 日志来测量提升速率。JVM 记录的 GC 暂停信息如下所示¶
0.291: [GC (Allocation Failure)
[PSYoungGen: 33280K->5088K(38400K)]
33280K->24360K(125952K), 0.0365286 secs]
[Times: user=0.11 sys=0.02, real=0.04 secs]
0.446: [GC (Allocation Failure)
[PSYoungGen: 38368K->5120K(71680K)]
57640K->46240K(159232K), 0.0456796 secs]
[Times: user=0.15 sys=0.02, real=0.04 secs]
0.829: [GC (Allocation Failure)
[PSYoungGen: 71680K->5120K(71680K)]
112800K->81912K(159232K), 0.0861795 secs]
[Times: user=0.23 sys=0.03, real=0.09 secs]
从上面的日志可以得知:GC 之前和之后的年轻代使用量以及堆内存使用量。这样就可以通过差值算出老年代的使用量。GC 日志中的信息可以表述为:
Event
Time
Young decreased
Total decreased
Promoted
Promotion rate
(事件)
(耗时)
(年轻代减少)
(整个堆内存减少)
(提升量)
(提升速率)
1st GC
291ms
28192K
8920K
19272K
66.2 MB/sec
2nd GC
446ms
33248K
11400K
21848K
140.95 MB/sec
3rd GC
829ms
66560K
30888K
35672K
93.14 MB/sec
Total
829ms
76792K
92.63 MB/sec
根据这些信息,就可以计算出观测周期内的提升速率:平均提升速率为 92MB/秒,峰值为 140.95MB/秒。
请注意, 只能根据 Minor GC 计算提升速率 。Full GC 的日志不能用于计算提升速率,因为 Major GC 会清理掉老年代中的一部分对象。
提升速率的意义 和分配速率一样,提升速率也会影响 GC 暂停的频率。但分配速率主要影响 minor GC,而提升速率则影响 major GC 的频率。有大量的对象提升,自然很快将老年代填满。老年代填充的越快,则 Major GC 事件的频率就会越高¶
前面章节提到过,Full GC 通常需要更多的时间,因为需要处理更多的对象,还要执行碎片整理等额外的复杂过程。
示例 让我们看一个过早提升的示例。这个程序创建/获取大量的对象/数据,并暂存到集合之中,达到一定数量后进行批处理¶
public class PrematurePromotion {
private static final Collection<byte[]> accumulatedChunks
= new ArrayList<>();
private static void onNewChunk(byte[] bytes) {
accumulatedChunks.add(bytes);
if(accumulatedChunks.size() > MAX_CHUNKS) {
processBatch(accumulatedChunks);
accumulatedChunks.clear();
}
}
}
此 Demo 程序 受到过早提升的影响。下面将进行验证并给出解决办法。
过早提升的影响¶
一般来说过早提升的症状表现为以下形式:
- 短时间内频繁地执行 Full GC
- 每次 Full GC 后老年代的使用率都很低,在 10~20% 或以下
- 提升速率接近于分配速率
要演示这种情况稍微有点麻烦,所以我们使用特殊手段,让对象提升到老年代的年龄比默认情况小很多。指定 GC 参数 -Xmx24m -XX:NewSize=16m -XX:MaxTenuringThreshold=1
,运行程序之后,可以看到下面的 GC 日志:
2.176: [Full GC (Ergonomics)
[PSYoungGen: 9216K->0K(10752K)]
[ParOldGen: 10020K->9042K(12288K)]
19236K->9042K(23040K), 0.0036840 secs]
2.394: [Full GC (Ergonomics)
[PSYoungGen: 9216K->0K(10752K)]
[ParOldGen: 9042K->8064K(12288K)]
18258K->8064K(23040K), 0.0032855 secs]
2.611: [Full GC (Ergonomics)
[PSYoungGen: 9216K->0K(10752K)]
[ParOldGen: 8064K->7085K(12288K)]
17280K->7085K(23040K), 0.0031675 secs]
2.817: [Full GC (Ergonomics)
[PSYoungGen: 9216K->0K(10752K)]
[ParOldGen: 7085K->6107K(12288K)]
16301K->6107K(23040K), 0.0030652 secs]
乍一看似乎不是过早提升的问题,每次 GC 之后老年代的使用率似乎在减少。但反过来想,要是没有对象提升或者提升率很小,也就不会看到这么多的 Full GC 了。
简单解释一下这里的 GC 行为:有很多对象提升到老年代,同时老年代中也有很多对象被回收了,这就造成了老年代使用量减少的假象。但事实是大量的对象不断地被提升到老年代,并触发 Full GC。
解决方案¶
简单来说,要解决这类问题,需要让年轻代存放得下暂存的数据。有两种简单的方法:
一是增加年轻代的大小,设置 JVM 启动参数,类似这样:-Xmx64m -XX:NewSize=32m
,程序在执行时,Full GC 的次数自然会减少很多,只会对 Minor GC 的持续时间产生影响:
2.251: [GC (Allocation Failure)
[PSYoungGen: 28672K->3872K(28672K)]
37126K->12358K(61440K), 0.0008543 secs]
2.776: [GC (Allocation Failure)
[PSYoungGen: 28448K->4096K(28672K)]
36934K->16974K(61440K), 0.0033022 secs]
二是减少每次批处理的数量,也能得到类似的结果。
至于选用哪个方案,要根据业务需求决定。
在某些情况下,业务逻辑不允许减少批处理的数量,那就只能增加堆内存,或者重新指定年轻代的大小。
如果都不可行,就只能优化数据结构,减少内存消耗。但总体目标依然是一致的——让临时数据能够在年轻代存放得下。